小型二足ロボットのスケート運動

一三次元画像処理を用いた運動計測一

杉内研究室 19NA134 佐藤和輝

1. 背景

二足歩行ロボットや人型ロボットについて

■ 利点

- 人の活動を中心とした既存の環境への高い適応性
- 不整地などに対する高い踏破性

■ 課題

- 車輪駆動ロボットと比べると移動速度が遅い点
- 全身のアクチュエータ駆動によりエネルギー効率が低い点

■ 解決案

● 二足ロボットによる『スケート運動』の実現

目指す姿

多自由度・多関節の様々な歩行型ロボットへの実装を可能にするため 単純な原理・構造による滑走技術の確立を目指す

2. 研究目的

これまでの研究成果と解決すべき課題

- これまでの研究成果
 - 1. 小型二足ロボット"Penguinkun"の開発
 - 2. シミュレーションによる安定・高効率な滑走法の探索

■ 課題

- 滑走が安定せず,転倒を起こす点
- 機体の滑走状態の定量的な計測手法がない点
- 機体の改良前後の滑走状態の比較が行えない点
- シミュレーションと実機の滑走の比較が行えない点

本研究の目的

滑走状態の定量的な計測手法を考案し、これを用いて シミュレーションで得られた理想的な滑走を達成するための 実機とシミュレーションのギャップを埋めることを目的とする.

Penguinkun3号

3. スケートロボットの紹介

小型二足ロボット"Penguinkun 4th"の紹介

項目	説明		
質量[g]	2200		
全長[mm]	550		
脚部構造	ヨー軸, ピッチ軸制御 ロボット全体で4自由度		

Penguinkun3号機

特徴点の設計

- 1. 視認性, 小型, 軽量 青色LEDを胴体背面に4点設置し, 胴体の位置・姿勢を計測した.
- 2. 滑走開始時の計測 赤色LEDをマイコンで発光制御し, 滑走開始時の合図とした.

4. デプスカメラの説明

Intel RealSense D435の外観

☑4.1 Intel RealSense D435

三次元点群の例

ステレオ法による深度計測の概要

図4.2 ステレオカメラの仕組み

2台のカメラから得られる画像の視差を
 基に、三角測量を用いて深度を算出

$$dZ = \frac{Z^2}{fB} dP_x$$

dZ:深度誤差, Z:深度, f:焦点距離 B:基線長, dP_x :視差分解能

5. 計測システム

計測システムの構成

ROS(Robot Operating System)と三次元点群ライブラリのPoint Cloud Libraryを採用

表5.システムの概要

入力	三次元点群	Becorder
出力1 (処理1)	滑走開始の時刻 (赤色LEDの計測)	RealSense SDK Color Euclidean Cluster
出力2 (処理2)	機体の同次変換行列 (青色LEDの計測)	Input Filter Cluster Custer Extract Extract Output2
出力3 (処理3)	床平面の方程式 (床平面の検出)	Plane Segmentation Output3
動作周波数	30Hz	node file prosses 1 prosses 2 prosses 3
		図5.計測システムのノード線図

5.1 機体の同次変換行列の算出

カメラから見た機体の同次変換行列の算出(出力2,処理2)

RealSense 1. RealSenseによる 撮影された点群 SDK 三次元点群の取得 2. HSI値 によるフィルタ Color 青色のみから成る点群 Filter リング、青色の抽出 • Euclidean 近傍点との距離による クラスタリングされた点群 Cluster クラスタリング Extract Ó ٥ **C1** x1 y1 **z1** 4. それぞれのクラスタを Cluster **C2 x2 y1** z2 クラスタの重心から成る点群 Center 重心座標で表現 **x3 C3** y2 **z**3 Extract x4 **y3** z4 5. 位置合わせによる Iterative 計測点群とモデル点群の位置 同次変換行列の算出 Closest 合わせに用いた同次変換行列 Point

6.1位置の計測実験

位置測定の実験

実験手順

- 1. 1.0m ≤ x ≤ 3.0m, -0.5m ≤ y ≤ 0.5mの範囲で0.5mおきに格子点を設定
- 2. (x, z) = (0.0, 0.0)となる位置にRealSenseを設置
- 3. 格子点上に機体を設置して、その様子を約1秒撮影し機体の位置を計測

Real Senseが撮影する画像

実験の様子を天井からみた様子(赤:格子点)

6.1.1位置の計測結果

位置の計測結果

図6.1.1 位置の測定結果

表6.1.1 計測点と格子点の距離[mm]

	x=1.0	x=1.5	x=2.0	x=2.5	x=3.0
y=0.5	-	17.8	(50.5)	10.4	21.3
y=0.0	(10.8)	12.3	10.5	8.04	57.4
y=-0.5	-	(20.2)	2.04	40.7	38.5

- 図6.1.1は位置の測定実験の結果である.
 各格子点において30frame分の計測座
 標の平均値をプロットした.
- 表6.1.1に計測点と格子点の位置の距離 を示した。()付の数値は、その点の誤差 がステレオ法による計測誤差を超えて いることを示している。
- (x,y)=(1.0,0.5), (1.0,-0.5)においては、特 徴点の一部が視野角の外に出たため 計測不可であった。
- 設置された格子点と算出された位置との距離は 最小で(x,y)=(2.0,-0.5)において2.04mm 最大で(x,y)=(3.0,0.0)において57.4mm であった.

9

6.2 姿勢の計測実験

姿勢の計測実験

実験方法

- 3軸が調整可能な雲台に固定した機体を, (x, y) = (1.5,0.0)に設置した.
- Roll角の計測では、θを1.8°毎に−18.0°≤θ≤18.0°の範囲で計測した。
- Pitch角の計測では、 $\theta \ge 1.8$ °毎に $0.0^\circ \le \theta \le 30.6^\circ$ の範囲で計測した.
- Yaw角の計測では, θを1.8°毎に−14.4°≤θ≤14.4°の範囲で計測した.

6.2.1 姿勢の計測結果

- Roll 角の計測精度は±0.5°程度,
 - Pitch 角と Yaw 角では±3.0°程度であることが確認された。
 - 設定角に対する計測結果の標準偏差 はRoll角で0.12°, Pitch角で0.33°, Yaw角で0.54°であった.
 - ステレオカメラの深度方向では、物体 との距離の二乗に比例して精度が低 下する.このため、Roll角の計測精度 に比べて、Pitch角とYaw角の計測精 度は低下することが確認された。
 - ・ 以上の結果から,機体のRoll軸周りの 姿勢については,十分な精度と信頼 度で計測できることが確認できた.

直線滑走の計測実験

実験方法

- 機体を, (x, y) = (0.6,0.0)に設置した.
- 8ストローク分の滑走を計測した.

Fig8.1 計測結果を描画した様子(低速再生)

Fig8.2 滑走の様子

7.1 滑走の計測結果

- 図7.1.2より、Roll角の上死点は約11.6°
 である一方、下死点は-7.71°であり、揺動に約4°の差が確認された。
- 図7.1.2より, Roll角の波形は正弦波に近く、なめらかであることから、支持脚と遊脚の切りかえがスムーズに行われていることが確認できた。
 (従来はRoll角の波形に乱れが存在した)
- 図7.1.3より, 滑走計画に反して Right_Toe (つま先)が先に接地している ことが確認された. (5600ms付近)
- 1ストローク(周期1.3s)当りに約40点の
 データを記録することが出来,滑走の状態を十分観察することが出来た.

- 機体の滑走状態を定量的に計測するシステムを開発した.
- 機体の位置・姿勢, 脚部の接地状態の計測が可能となった.
- 現行のスケート動作について,以下に示す結果が得られた.
 - 1. 左右の揺動運動について, roll角に左右差が生じていること
 - 2. かかとつま先の順に着地する滑走計画に反して、つま先が先に着地している ことが確認された.

機体の滑走状態を計測し、滑走を評価する。 滑走状態の計測結果から、滑走を評価する手法を考案する。

機体が転倒する原因の究明や機体の滑走姿勢の改善を目指す. 機体本体から得られる関節角のデータとRealSenseから得られる姿勢角の データを比較する.

■ <u>シミュレーションと実機の滑走状態のギャップを</u>埋める.

同研究室で取り組んでいる小型二足ロボットの滑走シミュレーションに よって得られる、安定・高効率な滑走を実機が達成できるように、機体の ハードウェア、ソフトウェアの改良の提案を行う.

■ RealSenseの撮影可能範囲を拡張する.

平面を移動,回転できる測定用ロボットをオムニホイールを用いて 製作しRealSenseの搭載を図る.